Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 12(1): 12596, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1956423

ABSTRACT

Low power microwave can effectively deactivate influenza type A virus through the nonthermal structure-resonant energy transfer effect, at a frequency matching the confined-acoustic dipolar mode frequency of the virus. Currently, aerosol is considered the major route for SARS-CoV-2 transmission. For the potential microwave-based sterilization, the microwave-resonant frequency of SARS-CoV-2 must be unraveled. Here we report a microwave absorption spectroscopy study of the SARS-CoV-2 and HCoV-229E viruses through devising a coplanar-waveguide-based sensor. Noticeable microwave absorption can be observed, while we identified the resonant frequencies of the 1st and 2nd dipolar modes of SARS-CoV-2 virus as 4 and 7.5 GHz respectively. We further found that the resonant frequencies are invariant to the virus titer, and we also studied the microwave absorption of HCoV-229E in weak acidity medium to simulate the common pH value in fluid secretion. Our results suggest the possible radiation frequency for the recently proposed microwave sterilization devices to inactivate SARS-CoV-2 virus through a nonthermal mechanism so as to control the disease transmission in the post-pandemic era.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Microwaves , Pandemics , SARS-CoV-2
2.
Sci Rep ; 11(1): 8692, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1199310

ABSTRACT

A metal nanoparticle composite, namely TPNT1, which contains Au-NP (1 ppm), Ag-NP (5 ppm), ZnO-NP (60 ppm) and ClO2 (42.5 ppm) in aqueous solution was prepared and characterized by spectroscopy, transmission electron microscopy, dynamic light scattering analysis and potentiometric titration. Based on the in vitro cell-based assay, TPNT1 inhibited six major clades of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with effective concentration within the range to be used as food additives. TPNT1 was shown to block viral entry by inhibiting the binding of SARS-CoV-2 spike proteins to the angiotensin-converting enzyme 2 (ACE2) receptor and to interfere with the syncytium formation. In addition, TPNT1 also effectively reduced the cytopathic effects induced by human (H1N1) and avian (H5N1) influenza viruses, including the wild-type and oseltamivir-resistant virus isolates. Together with previously demonstrated efficacy as antimicrobials, TPNT1 can block viral entry and inhibit or prevent viral infection to provide prophylactic effects against both SARS-CoV-2 and opportunistic infections.


Subject(s)
Gold/pharmacology , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/physiology , SARS-CoV-2/physiology , Silver/pharmacology , Zinc Oxide/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Resistance, Viral/drug effects , Food Additives/pharmacology , Gold/chemistry , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/drug effects , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Oseltamivir/pharmacology , Particle Size , Protein Binding/drug effects , SARS-CoV-2/drug effects , Silver/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Zinc Oxide/chemistry
3.
Heliyon ; 6(12): e05646, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-967129

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative agent for the outbreak of coronavirus disease 2019 (COVID-19). This global pandemic is now calling for efforts to develop more effective COVID-19 therapies. Here we use a host-directed approach, which focuses on cellular responses to diverse small-molecule treatments, to identify potentially effective drugs for COVID-19. This framework looks at the ability of compounds to elicit a similar transcriptional response to IFN-ß, a type I interferon that fails to be induced at notable levels in response to SARS-CoV-2 infection. By correlating the perturbation profiles of ~3,000 small molecules with a high-quality signature of IFN-ß-responsive genes in primary normal human bronchial epithelial cells, our analysis revealed four candidate COVID-19 compounds, namely homoharringtonine, narciclasine, anisomycin, and emetine. We experimentally confirmed that the predicted compounds significantly inhibited SARS-CoV-2 replication in Vero E6 cells at nanomolar, relatively non-toxic concentrations, with half-maximal inhibitory concentrations of 165.7 nM, 16.5 nM, and 31.4 nM for homoharringtonine, narciclasine, and anisomycin, respectively. Together, our results corroborate a host-centric strategy to inform protective antiviral therapies for COVID-19.

4.
EMBO Mol Med ; 13(1): e12828, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-914845

ABSTRACT

To circumvent the devastating pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a humanized decoy antibody (ACE2-Fc fusion protein) was designed to target the interaction between viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). First, we demonstrated that ACE2-Fc could specifically abrogate virus replication by blocking the entry of SARS-CoV-2 spike-expressing pseudotyped virus into both ACE2-expressing lung cells and lung organoids. The impairment of viral entry was not affected by virus variants, since efficient inhibition was also observed in six SARS-CoV-2 clinical strains, including the D614G variants which have been shown to exhibit increased infectivity. The preservation of peptidase activity also enables ACE2-Fc to reduce the angiotensin II-mediated cytokine cascade. Furthermore, this Fc domain of ACE2-Fc was shown to activate NK cell degranulation after co-incubation with Spike-expressing H1975 cells. These promising characteristics potentiate the therapeutic prospects of ACE2-Fc as an effective treatment for COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Viral/pharmacology , COVID-19/prevention & control , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Chlorocebus aethiops , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Vero Cells
5.
Cell Rep ; 33(2): 108254, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-812312

ABSTRACT

Development of specific antiviral agents is an urgent unmet need for SARS-coronavirus 2 (SARS-CoV-2) infection. This study focuses on host proteases that proteolytically activate the SARS-CoV-2 spike protein, critical for its fusion after binding to angiotensin-converting enzyme 2 (ACE2), as antiviral targets. We first validate cleavage at a putative furin substrate motif at SARS-CoV-2 spikes by expressing it in VeroE6 cells and find prominent syncytium formation. Cleavage and the syncytium are abolished by treatment with the furin inhibitors decanoyl-RVKR-chloromethylketone (CMK) and naphthofluorescein, but not by the transmembrane protease serine 2 (TMPRSS2) inhibitor camostat. CMK and naphthofluorescein show antiviral effects on SARS-CoV-2-infected cells by decreasing virus production and cytopathic effects. Further analysis reveals that, similar to camostat, CMK blocks virus entry, but it further suppresses cleavage of spikes and the syncytium. Naphthofluorescein acts primarily by suppressing viral RNA transcription. Therefore, furin inhibitors may be promising antiviral agents for prevention and treatment of SARS-CoV-2 infection.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Antiviral Agents/pharmacology , Fluoresceins/pharmacology , Furin/antagonists & inhibitors , Protease Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication , Animals , Betacoronavirus/drug effects , Betacoronavirus/metabolism , Betacoronavirus/physiology , Chlorocebus aethiops , Humans , Proteolysis , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL